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We study the electrostatic potential of a molecular wire bridging two metallic electrodes in the limit
of weak contacts. With the use of a tight-binding model including a fully three-dimensional
treatment of the electrostatics of the molecular junction, the potential is shown to be poorly
screened, dropping mostly along the entire molecule. In addition, we observe pronounced Friedel
oscillations that can be related to the breaking of electron–hole symmetry. Our results are in
semiquantitative agreement with recent state-of-the-artab initio calculations and point to the need
of a three-dimensional treatment to properly capture the behavior of the electrostatic potential.
Based on these results, current-voltage curves are calculated within the Landauer formalism. It is
shown that Coulomb interaction partially compensates the localization of the charges induced by the
electric field and consequently tends to suppress zones of negative differential resistance. ©2003
American Institute of Physics.@DOI: 10.1063/1.1539863#

I. INTRODUCTION

Due to important technical progress, the field of molecu-
lar electronics, born in the mid-70s with the proposal of Avi-
ram and Ratner to use single organic molecules as rectifiers,1

receives rapidly growing interest.2–4 Indeed, new fabrication
methods and probes now enable individual molecules or
small numbers of them to be connected to macroscopic
electrodes.2,5–8 Among these methods, one may cite, for in-
stance, the break-junction technique5,6,8and the use of a con-
ducting atomic-force microscope~AFM! to contact mol-
ecules absorbed on a metallic surface.7

On the theoretical side, the problem posed by these ex-
perimental works is highly challenging. We are facing a non-
equilibrium many-body problem where, moreover, the cou-
pling to a phonon bath may also be of importance. Up to
now, most of the studies have focused on the coherent re-
gime and the Landauer approach has been employed to ob-
tain the conductance fromab initio or semiempirical
models.3 Important inelastic processes were included only
within simple models9–13 and much further progress is
needed before one may hope to reach a satisfactory under-
standing of the problem.

The exact number of molecules contacted by the leads
remains for a large part uncontrolled in the experimental set-
ups cited above.2,8 In theoretical modeling it is convenient to
assume that a single organic molecule bridges two semi-
infinite metallic electrodes~cf. Fig. 1!. Another important
experimental aspect is the fact that current-voltage character-
istics are measured with applied voltages up to a few volts,
values which bring us well away from the linear regime.

In this context, a central question concerns the electro-

static potential profile of a biased molecular wire. The im-
portance of this issue was first demonstrated by Datta and
co-workers.14,15 Using semiempirical models, they have
shown that different choices of the electrostatic profile have
a profound effect on the current-voltage characteristics of a
molecular junction. For instance, the transport properties are
strongly modified depending on whether the potential drop
occurs at the interface between molecule and electrode or
along the molecular wire. In fact, it is natural to assume that
even the details of the potential shape have a considerable
effect on molecular conductance.

Recently, a few works along that line have been
reported.16–18 They give us a rather ambiguous view of this
fundamental problem. Model calculations involving self-
consistent solutions of the coupled Poisson and Schro¨dinger
equations suggest that the potential drop occurs mainly at the
interface between the molecule and the electrodes.16 Within
the molecule, the electrostatic potential is then found to be
essentially flat. Screening appears to be very efficient within
this approach, and the final conclusions are in agreement
with some previous investigations.14,15 However, these
model calculations involve a drastic approximation: instead
of solving the full Poisson equation, the authors of Ref. 16
have used a one-dimensional version of it. Implicitly, it is
then assumed that the lateral dimensions of the molecule are
much larger than the screening length. For quasi-one-
dimensional systems with lateral dimensions of the order of a
few angstroms, such as the organic molecules used in recent
experimental work, this approximation is clearly
questionable.19 Indeed, recent state-of-the-artab initio calcu-
lations on carbon and gold chains show a quite different
picture.17,18 In these works, the potential drop occurs not
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only at the interface but rather along the entire molecule.
Moreover, the local potential is found to display pronounced
Friedel oscillations. Contrary to previous results, screening
appears to be rather inefficient, even for metallic wires.

We are then left with two different pictures, and it be-
comes clear that a full understanding of the electrostatic po-
tential profile in biased molecular wires or metallic constric-
tions is still lacking. In this work, we readdress the problem
following the approach by Mujicaet al.16 We perform model
calculations and solve the coupled set of two equations: the
Poisson equation for the electrostatics and the Schro¨dinger
equation for the electronic structure. In this respect, our work
is similar to that of Mujicaet al.16 However, the calculation
is modified in ways that we believe to be essential. In par-
ticular, we treat the real three-dimensional Poisson equation.
As recently discussed by us,19 we expect that this proper
handling of the electrostatic problem changes the qualitative
behavior: The potential is poorly screened and falls off sub-
stantially along the molecule. Indeed, the electrostatic poten-
tial profile of the model calculations presented here is in
semiquantitative agreement with theab initio results reported
in Refs. 17 and 18. However, whileab initio calculations are
involved and intricate enough to leave the underlying phys-
ics essentially obscure, our model includes only the ingredi-
ents necessary to capture the correct screening effects, and
consequently our calculations are rather economic in time.
We thus believe that our approach may help to gain further
insight into the difficult problem of understanding transport
through molecules, i.e., at a scale where quantum effects are
prominent. A forthcoming work by Ghoshet al.20 reaches
conclusions similar to those presented here.

In Sec. II, our model Hamiltonian is introduced. The
electronic density in the absence of a bias potential is then
studied in Sec. III, using exact diagonalization and Hartree–
Fock calculations that are shown to agree reasonably well
with each other. The electrostatic profile is then calculated in
Sec. IV at the Hartree-Fock level. Finally, the current-voltage
characteristics are discussed in Sec. V.

II. MODEL HAMILTONIAN

A. Coulomb interaction including image charges

The physical problem posed by a molecular wire be-
tween two infinite metallic reservoirs is far too complicated
to be solved exactly and, to proceed, several approximations
are necessary. First, we assume that the surfaces of the two
electrodes are infinite planes~cf. Fig. 1!. Second, the mol-
ecule is assumed to be weakly connected to the metallic elec-
trodes so that their chemical constitution is unimportant. This
is certainly not fulfilled for some of the wires examined ex-
perimentally, with covalent bonds between molecule and
electrode. Finally, we assume the characteristic time scale for
electronic processes in the electrodes to be much shorter than
the transit time of electrons in the wire. The electrodes can
then be treated as equipotential surfaces, and the Schro¨dinger
equation is solved under these potential boundary conditions.
We are then within the same framework used in Ref. 16, but
proceed differently. We first determine the Coulomb interac-

tion potential which includes the image charges due to the
metallic leads, keeping its three-dimensional character. Then,
we solve the electronic wire problem.

The Coulomb interaction energy reads

W5 1
2E d3rE d3r 8r~r !r~r 8!w~r ,r 8!, ~1!

wherer~r ! is the charge density in the wire andw~r ,r 8! is the
potential at pointr5(x,y,z) produced by the charge located
at point r 85(x8,y8,z8). The Coulomb potential is the solu-
tion of the Poisson equation

D rw~r ,r 8!524pUd~r2r 8!, ~2!

where for convenience we have introduced a factorU mea-
suring the strength of the electron–electron interaction. In
the absence of the metallic electrodes the solution of~2! is
given by the standard Coulomb potential

w0~r ,r 8!5
U

ur2r 8u
. ~3!

In the setup depicted in Fig. 1, we require the potential
in the absence of an external bias to vanish on the surfaces of
the metallic electrodes, i.e., atz50 andz5L. A solution of
the Poisson equation with these particular boundary condi-
tions is found using the standard method of image charges

w~r ,r 8!5 (
p52`

1`

@w0~r12pLẑ,r 8!2w0~2pLẑ2r ,r 8!#,

~4!

whereL is the distance between the two electrodes~cf. Fig.
1! and ẑ the unit vector along the molecular axis.

w~r ,r 8! is a genuine three-dimensional Coulomb poten-
tial including the effects of the two semi-infinite metallic
electrodes. The electrostatics of the molecular junction is
then governed by this potential. It remains to construct and
solve the Schro¨dinger equation for the molecular wire.

B. Tight-binding model including image charges

In the following, we will mainly be concerned with con-
jugated molecules and, in particular, with their low-energy
properties. An appropriate description can then be given by

FIG. 1. Idealized molecular junction. A molecular wire, modeled by a finite
one-dimensional lattice, bridges two metallic electrodes with surfaces as-
sumed to be infinite planes. The tunneling contacts, effective only at the two
molecular end sites indicated by 1 andN, are assumed to be weak. The
chemical potentials in the left and right electrode are denoted bym l andm r ,
respectively.
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an effective tight-binding Hamiltonian for thep electrons
only.21,22 In addition, since there existab initio results for
short chains of gold atoms,18 it is also of interest to study
systems with electrons ins orbitals.

We therefore attach Gaussian-type orbitals of the form

fn~r !5Asx
s exp@2a@x21y21~z2zn!2##, ~5!

to each atomic siten. This allows us to model boths orbitals
with s50 andp orbitals withs51. The center of the orbital,
zn5d1(n21)a, depends on the distanced between each
electrode and the molecule as well as the lattice constanta in
the molecule~cf. Fig. 1!. The parametera determines the
spread of the state and gives an estimate of the electronic
density. Finally, the normalization constants fors- andp or-
bitals are given byA05(2a/p)3/4 and A152(2/p)3/4a5/4,
respectively.

The explicit form~5! of the orbitals allows us to deter-
mine the effective parameters entering the tight-binding
model. In the following, we adopt the ‘‘zero differential
overlap’’ ~ZDO! approximation21–23

fn* ~r !fm~r !5ufn~r !u2dn,m , ~6!

which remains valid as long as the orbitalsfn are strongly
localized on the atomic sitesn. It implies orthogonality be-
tween the Gaussian orbitals on different sites and, most im-
portantly, leads to a drastic reduction of nonvanishing matrix
elements of the Coulomb operator since only the two center
integrals are retained in the final model. In particular, no
exchange integrals will appear. These integrals, involving a
differential overlap, are usually negligibly small compared to
the Coulomb integrals. Moreover, we approximate the posi-
tive cores by point charges localized at the atomic sitesm
with coordinates (0,0,zm). Then, the energy of an electron
localized at siten due to all positive core charges and their
images becomes

en52U (
m51

N E d3r ufn~r !u2w~r ,zmẑ!. ~7!

Within the ZDO approximation the only finite Coulomb ma-
trix elements are related to the interaction energy between
electrons localized at sitesn andn8

Un,n85UE d3rE d3r 8ufn~r !u2w~r ,r 8!ufn8~r 8!u2. ~8!

It is worthwhile to notice that the interaction terms~7! and
~8! depend on the positionn along the chain due to the image
charges but also because of the finite size of the molecular
wire.

Within the ZDO approximation kinetic energy contribu-
tions vanish as a consequence of~6!. To lowest order, the
overlap leads to a constant shift of the on-site energyen that
may be disregarded and to nearest-neighbor hopping. The
hopping matrix elementt cannot be evaluated directly within
the ZDO and, therefore, has to be treated as a parameter of
the model.21–23 However, it is possible to relax the
approximation23 and estimate the hopping matrix elements
from ~5!. Doing so, we have found that their dependences on
n are not pronounced, and, moreover, this kind of more so-
phisticated treatment would not change qualitatively our final

conclusions. Therefore, we assume the hopping matrix ele-
ments,t, to be constant along the chain, and use the ratioU/t
as a parameter to examine the importance of electron–
electron interaction.

With the parameters just discussed, we obtain a descrip-
tion of the electrons in terms of an effective tight-binding
model which includes long-range Coulomb interaction21,22

H5(
n,s

~en1vn!cn,s
† cn,s1(

n,s
t~cn11,s

† cn,s1h.c.!

1
1

2 (
n,n8,s,s8

Un,n8cn,s
† cn8,s8

† cn8,s8cn,s . ~9!

cn,s
† (cn,s) are the usual creation~annihilation! operators for

an electron with spins in the local statefn . In the first term,
we have accounted for an additional shift of the local poten-
tial due to an external bias. With the chemical potentialsm l

andm r in the left and right electrode, respectively, the shift at
site n is given by

vn5m l1
m r2m l

L
zn . ~10!

The resulting tight-binding model~9! is mostly defined
by the geometry of the molecular junction. The only other
parameters are the energiest and U, which determine the
strength of the kinetic and Coulomb energies, respectively. It
is usually believed that conjugated molecules lie in an inter-
mediate regime whereU/t51,...,4.21,22

III. ELECTRON DENSITY WITHOUT BIAS POTENTIAL

Consider first the situation without bias potential,m l

5m r or vn50. We analyze for this case the electron density
at equilibrium in the absence of electron transfer between the
molecule and the leads. In all the calculations presented here,
we assume the chains to be electrically neutral with on av-
erage one electron per site. Because of the electron spin, this
corresponds to the half-filled case. Furthermore, we restrict
ourselves to the ground state of the system.

We have done exact diagonalization studies for chains of
up to 12 sites. Results for the charge density of a chain with
12 sites shown in Fig. 2 are typical for other cases studied.
Two main features can easily be seen.~i! The electron den-
sity is nonuniform: the electrons have a tendency to shift
towards the middle of the chain.~ii ! Because of this nonuni-
formity, substantial Friedel oscillations occur across the wire.
These features can be explained by invoking electron–hole
symmetry as shown below.

For the case of a half-filled band it has long been known
that the electron density is uniform, i.e., does not depend on
the site indexn, for models defined on bipartite lattices in
such a way that electron–hole symmetry is fulfilled. This
theorem was first discovered for the ground state of the free-
electron~Hückel! model24 and later extended to some inter-
acting systems.25 More recently, a generalization to canonical
and grand canonical ensembles was proven for a large class
of models.26 Mathematically, the theorem applies to models
invariant with respect to the transformationcn,s

†

→(21)ncn,s .
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Applying this transformation, we find that the Hamil-
tonian of the molecular wire~9! is invariant only if the equal-
ity

en52
1

2 (
m51

N

Un,mS 12
dn,m

2 D1K ~11!

is fulfilled, where K is a constant. This implies that the
electron–ion interaction is essentially compensated, up to a
constant term, by the repulsive electron–electron interaction.
Notice that allowing for hopping matrix elements that de-
pend on the position in the chain would not change this
equality. Indeed, a term like (n,stn,n11(cn11,s

† cn,s

1cn,s
† cn11,s) remains unchanged when the electron–hole

transformation is applied. From this point of view, it is not
necessary to go beyond the ZDO approximation.

The equality~11! can be satisfied only in very particular
cases where at least one of the following conditions is satis-
fied:

~i! the chain is infinite;
~ii ! there is no interaction,U50;
~iii ! a→`, corresponding to interactions between point

charges.

None of these criteria is fulfilled in realistic cases of
interest. With the exception of carbon nanotubes, experimen-
tal molecular junctions involve relatively short~,10 nm!
molecular chains.2 The Coulomb interaction is of the same
order of magnitude as the kinetic terms21,22and certainly not
negligible. Even then, the electron density would still be uni-
form if the electron-orbitals are reduced to points~a→`!
regardless of the presence of image charges. Therefore, one
may say that the nonuniformity of the density comes from
the lateral extension of the electronic clouds, thep- or s
states. This shows, once again, the need for a three-
dimensional treatment of the electronic structure.

The exact shape of the electron density is determined by
~i! the strength of the Coulomb interaction,U/t; ~ii ! the
spread of the electronic orbitals,a; and~iii ! the geometry of

the system, expressed in our model by the length (n21)a of
the molecule and by the distanced between the electrodes
and the molecule.

All these factors contribute to yield, instead of the uni-
form density condition~11!, the relation

en52
1

2 (
m51

N

Un,mS 12
dn,m

2 D1 f L~n!, ~12!

where f L(n) is a function of the position in the chain; its
dependence onn is responsible for the nonhomogeneity of
the electronic density. It is of interest to understand the ef-
fects of each of these parameters separately.

Coulomb interaction. Starting from the noninteracting
case where the electronic density is uniform, increasingU
results in an increase of the Friedel oscillations until the elec-
trons start to localize. In the limitU→`, half filling leads to
a Mott insulator and one recovers a constant electron density.

Spread of the electronic orbitals. When the orbitals are
reduced to points~point charge limit!, a→`, the electronic
density is uniform. Indeed, in this particular limit the
electron–ion and electron–electron interactions have the
same form, restoring the electron–hole symmetry of the mo-
lecular Hamiltonian. Accounting for a spread of the orbitals
increases slowly the amplitude of the Friedel oscillations.

Geometry of the molecular junction. Two effects need to
be distinguished:~i! the finite size effects and~ii ! the image-
charge effects. In Fig. 2, the dashed curve shows the density
for the very same system used to obtain the other two curves,
except that now no metallic electrodes are present. There-
fore, the dashed curve contains only the finite size effects.
From this particular example, one sees that both effects con-
tribute to the Friedel oscillations and that, in order to get the
correct density, image interactions should be included unless
the electrode–molecule distances are large. In fact, in the
example of Fig. 2, the contribution to the oscillations due to
the image charges is the larger one. The Coulomb interaction
with the electrodes described by the image charges is there-
fore crucial to estimate transport properties of molecular
wires or metallic constrictions. We have observed, as ex-
pected, that finite size effects alone tend to disappear when
the chain size is increased. In contrast, the effect of image
charges tends to become more important: the amplitude of
the Friedel oscillations increases with the system size due to
the presence of the two metallic electrodes. This tendency
should continue until, for long wires, which we do not con-
sider here, the oscillations occur predominantly near the
edges.

Finally, the dotted curve of Fig. 2 shows the electron
density with metallic electrodes calculated within the
Hartree–Fock approximation; it is in very good agreement
with the exact result. We have performed calculations for
different values ofU up toU54t and observed that, as far as
the electron density is concerned, the Hartree–Fock approxi-
mation gives reasonable results. This allow us to use this
mean-field approach for the study of the electrostatic profile
in biased molecular wires~Sec. IV! and their transport prop-
erties~Sec. V!.

FIG. 2. Electronic density without bias potential for a molecular wire of
carbon (s51) with N512 sites. The parameters area54.5/a2 and U5t.
The full curve is the exact result for a molecule–electrode distance ofd
52a. The dotted curve is for the same geometry but at Hartree–Fock level.
The dashed curve is the exact result for the case without metallic electrodes,
d→`.
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IV. ELECTROSTATIC POTENTIAL IN BIASED
MOLECULAR WIRES

The application of the screened on-site electrostatic po-
tential to calculations of conductance properties is useful
only within a single electron theory, e.g., in the mean-field
description of the process. This is how this concept was ap-
plied in the calculation of Mujicaet al.16 and in the density
functional theory.17,18 Here, our calculations are done using
the Hartree–Fock approximation applied to the molecular
Hamiltonian ~9!. In the previous section, by comparing the
mean-field electron density with the exact one, we have al-
ready shown that the approximate result is reasonable in the
range of parameters proper to conjugated molecules. More
precisely, the Hartree–Fock density is in very good agree-
ment with the exact results for values ofU up to, approxi-
mately, 2t ~cf. Fig. 2! and remains of reasonable accuracy up
to values of about 4t. In the following we present only re-
sults forU5t, but the same qualitative picture arises also for
larger values ofU.

Starting from the initial tight-binding model~9!, we
build an effective Hamiltonian by solving self-consistently
the usual Hartree–Fock equations21 leading to

Heff5(
n,s

en~V!cn,s
† cn,s

1 (
n,n8,s

tn,n8~V!~cn8,s
† cn,s1h.c.!, ~13!

whereV5m l2m r . The chemical potentials will always be
chosen such thatm l52m r . en(V) is the effective on-site
potential which includes the ionic attraction and the
electron–electron repulsion incorporated within a mean-
field picture as well as the on-site potential~10!. tn,n8(V)
is the effective hopping matrix element which includes
the exchange terms. Note that a vanishing of exchange
integrals in the ZDO approximation is not equivalent to a
Hartree approximation. Indeed, a mean-field approximation
of ~9! still contains exchange terms of the form
2 1

2(nÞn8Un,n8^cn,s
† cn8,s&cn8,s

† cn,s which, due to the long-
range part of the Coulomb potential~4!, include long-range
hopping.

Without Coulomb interactions, the electrostatic potential
is given by the ramp defined in~10!, i.e., by the potential in
the absence of a molecule. This linear profile has been used
sometimes in the literature to study nonlinear current-voltage
characteristics.27,28

In the presence of Coulomb interaction, the linear profile
is changed and the screened electrostatic potential,En(V), is
given by the difference between the on-site term with and
without bias voltage

En~V!5en~V!2en~0!. ~14!

A typical example is shown in Fig. 3 for a chain with 20
sites. We see two main features:~i! screening is not very
efficient and, consequently, there is only a small potential
drop at the interfaces but a finite slope of the potential along
the entire molecule;~ii ! there are substantial Friedel oscilla-
tions along the profile.

Our results differ from those of Mujicaet al.16 despite
the fact that the two models are closely related. These differ-
ences mostly come from the fact that we solve the Poisson
equation without resorting to a one-dimensional approxima-
tion. As recently shown by us within a classical model,19 a
three-dimensional treatment of the electrostatics is necessary,
and in fact leads to the identification of the lateral thickness
of the molecule as a new generic attribute that determines the
potential profile. In Fig. 4, we show a comparison between
our results and the calculations of Damleet al.18 for a chain
of six gold atoms. It is important to stress that we did not try
to fit the ab initio curve but, instead, we simply chose a
reasonable set of parameters. Note, however, that we include
the response of infinite leads while theab initio calculations
take only small metal clusters into account. Furthermore, the
asymmetry in the latter case indicates that theab initio cal-
culations result in a charged molecule, while in our case the
molecular wire always remains neutral. Otherab initio
calculations17,29,30 on similar models are also in agreement
with our observations.

To conclude this section, we summarize our main re-
sults: in the relevant range of parameters, screening is not

FIG. 3. Electrostatic potential profile for a carbon wire@s51 in Eq. ~5!#
with N520 sites. The parameters area54.5/a2, U5t, V5m l2m r5t, and
d52a. The dashed curve is the unscreened potential without molecule
~ramp potential!. The full curve is the screened potential in the presence of
the molecular wire. It shows a small decrease in slope along the entire
molecule with substantial Friedel oscillations.

FIG. 4. The electrostatic potential profile for a gold wire@s50 in Eq. ~5!#
with N56 sites obtained from Hartree–Fock calculations is shown by the
filled circles. The parameters used ared50.9a, a54.5/a2, andU5t. For
comparison the full curve shows theab initio results taken from Ref. 18.
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very efficient in the wire and the drop of the potential occurs
along the entire molecule. Additionally, substantial Friedel
oscillations are present in the electrostatic profile. Our results
are in good agreement with recentab initio results.17,18When
compared with the results of Ref. 16, our treatment stresses
the need to study the full three-dimensional problem, as far
as the electrostatics of the molecular junction is concerned.

In the next section, we discuss consequences of the
screening effects for the current-voltage characteristics of
molecular wires studied within the Landauer formalism.

V. CURRENT–VOLTAGE CHARACTERISTICS OF A
MOLECULAR WIRE IN THE WEAK TUNNELING
CONTACT LIMIT

In a model where only the first and the last atom of a
molecular chain couple to the corresponding metal leads and
at T50, the Landauer conduction formula yields3,31

I 5
2e

p\ E
mr

m l
dEuG1N~E,V!u2D l~E,V!D r~E,V!, ~15!

whereV5m l2m r andD l /r are the spectral functions for the
left and right reservoirs. The molecule–lead coupling only
occurs at sites 1 andN andG1N is the matrix element of the
exact Green function of the molecular junction between
these sites~cf. Fig. 1!.

This equation can be understood as a special case of the
Landauer formula32 adapted to the case of bad contacts,
where it is possible to use second-order perturbation theory
in the tunneling matrix element.31 In the limit of ‘‘ex-
tremely’’ bad contacts of interest here, the Green function of
the system in formula~15! may be replaced by the Green
function of the isolated molecular wire,G1N

0 .33 Moreover,
assuming that the product of spectral densities does not sig-
nificantly depend on energy in the range betweenm l andm r ,
one gets

I 5
2e

p\
D0

2E
mr

m l
dEuG1N

0 ~E,V!u2, ~16!

whereD0 is the spectral density at zero bias.
From this simplified equation, we can calculate the

current-voltage characteristics of the molecular junction, us-
ing only the Green function of the isolated molecular wire,
evaluated in the presence of the electrostatic potential created
by the metallic electrodes. Examples are given in Fig. 5 for
increasing Coulomb strengthU starting from the noninteract-
ing case where the on-site potential is given by the ramp
~10!.

In all cases, theI –V curves have a staircase structure
which is a common feature in the weak tunneling limit18,27,34

and simply reflects the discreteness of the molecular elec-
tronic spectrum. Indeed, an increase of the bias potential cor-
responds to an increase of the window of integration in for-
mula ~16!. Therefore, a jump in theI –V curves means that
one more discrete molecular level enters this window of in-
tegration.

It is interesting to note that Fig. 5 shows also wide re-
gions of negative differential resistance, in particular in the
noninteracting case. Within our simple formulation, they can

be explained by the localization of charges induced by a
strong enough electric field: at sufficiently high bias voltage,
charge carriers are localized at one end of the chain, resulting
in a decrease of the current. This could be an artifact of our
weak molecule–electrode coupling model; however, nega-
tive differential resistance has been found in recent
experiments,35 and electric field-induced localization could
be a way to understand these experimental findings.

The Coulomb interaction has two main effects on the
I –V characteristics. First, the positions of the current-
voltage steps are shifted to higher voltages reflecting the dis-
placement of the molecular levels to higher energy with in-
creasing Coulomb interaction. Second, the localization of the
charges due to a strong electric field is partially compensated
by the electron–electron repulsion. These screening effects
attenuate the negative differential resistance effects~cf. Fig.
5!. These observations are similar to those made by Mujica
et al.,27 where a Hubbard model was studied at the Hartree
level.

VI. CONCLUSION

We have addressed the problem of calculating transport
properties of a molecular wire bridging two semi-infinite me-
tallic electrodes. A first important part of this task is to de-
termine the electrostatic potential profile through the biased
wire.14–18Indeed, it is of importance to know how screening
effects modify the ramp potential@Eq. ~10!# existing in the
absence of the organic molecule.

This work and our earlier paper19 resolve discrepancies
between answers available in the literature. On the one hand,
a tight-binding model combined with a one-dimensional
Poisson equation gives a strong screening version of the
problem: the drop of the potential occurs at the interfaces
and the potential is therefore almost flat within the
molecule.16 On the other hand, recentab initio results give a
weak screening version: no substantial drop at the interfaces
but rather a decrease along the entire molecule together with
substantial Friedel oscillations.17,18

FIG. 5. Current-voltage characteristics for a carbon molecule (s51) with
N512, d52a, a54.5/a2, and for different Coulomb interaction strengths
U/t50, 0.1, 1 are depicted by the dotted, dashed, and full line, respectively.
The current is given in units of (2e/p\)D0

2/t.
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In this paper, we have proposed a modified tight-binding
model to address this question. It is based on three main
ingredients.~i! We introduce a three-dimensional Coulomb
potential@Eq. ~4!# which includes the image interaction with
the two metallic electrodes assumed to have planar surfaces.
~ii ! The electrons localized at atomic sites are modeled by
Gaussian-type orbitals of finite lateral extent@Eq. ~5!#. ~iii !
The positive background is assumed to be a set of point
charges localized on the atomic sites. With these three ingre-
dients, it is possible to evaluate the various terms of our
model Hamiltonian: the on-site energy@Eq. ~7!# and the
electron–electron interaction@Eq. ~8!#. They are all functions
of the position on the chain due to the finite size of the
system and the image charges induced by the electrodes. All
our calculations are done in the weak tunneling limit, assum-
ing bad contacts.

This model yields an electronic density that is nonuni-
form already in the absence of a bias potential—the electrons
prefer to be in the center of the wire—and displays pro-
nounced Friedel oscillations~Fig. 2!. These characteristics
are due to the fact that our model does not fulfill, in general,
the electron–hole symmetry.24–26 In the presence of an ap-
plied voltage the electrostatic potential profile does not drop
appreciably at the interfaces but rather, in accordance with
theab initio results of Refs. 17 and 18, it decreases along the
molecule with substantial Friedel oscillations appearing
along the entire profile~Figs. 3 and 4!. Our results are dif-
ferent from the ones of Ref. 16, where a one-dimensional
Poisson equation was used. This disagreement stresses the
need to perform a three-dimensional calculation, as done
here, to properly describe the electrostatic properties of the
molecular junction.

Finally, the current-voltage characteristics are obtained
within the same Hartree–Fock calculation using the Land-
auer formula~i.e., neglecting electronic correlation effects
and assuming coherent tunneling!. It shows a staircase struc-
ture ~Fig. 5!, as is common in the weak tunneling limit.18,27

Zones of negative differential resistance are found due to
charge localization induced by the electric field. The main
effects of the Coulomb interaction, within our approxima-
tions, are, on the one hand, a shift to higher energies of the
position of the current-voltage steps and, on the other hand, a
partial compensation of the localization of the electrons di-
minishing the negative differential resistance effects in
agreement with a previous study.27

In closing, it is important to stress some limitations of
our model. On the one hand, we consider coherent transport,
assuming that the electrons are transferred from one lead to
the other in a single quantum-mechanical process. This is a
good approximation if the tunneling time is much less than
the inelastic scattering time. For organic molecules, this tran-
sit time could be of the same order of magnitude as the
intramolecular vibronic relaxation time, especially in the
weak contact limit employed here.3 In this case, part of the
current could be due to sequential tunneling, where the mo-
lecular wire would be successively charged and discharged.
This important issue remains to be studied further. We have
neglected charging effects assuming the molecule to remain
neutral. At high voltage, this approximation could fail.27 The

average charge number of the molecule could increase in
analogy with Coulomb blockade phenomena observed in me-
soscopic metallic double-tunnel junctions and quantum
dots,36 and, more recently, in multiwall carbon nanotubes.37

A proper handling of the full problem requires treating
the wire as an open system dynamically coupled to the elec-
trodes and to the vibronic degrees of freedom. This program
is far beyond the scope of the present work.
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